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Abstract  
    In the present analysis we have discussed the effects of heat absorption, chemical 

reaction and wall properties on peristaltic flow of micropolar nanofluid through a porous 

medium. The fundamental equations of the motion are first modulated and then 

simplified under the assumptions of long wavelength and low Reynolds number.  The 

exact solutions have been calculated for the velocity and the microrotation velocity, while 

the governing equations of energy and nanoparticles equations are solved analytically 

using homotopy perturbation method. In the end, graphical results are discussed to 

illustrate the effects of various physical parameters of the problem on these distributions.       

1. Introduction      
      Nanoparticle-fluid suspensions are termed nanofluids, obtained by dispersing 

nanometer sized particles in a conventional base fluid water, oil and ethylene glycol. 

Nanoparticles of materials such as metallic oxides, nitride ceramics, carbide ceramics and 

metals have been used for the preparation of nanofluids. These nanofluids have been 

found to possess an enhanced thermal conductivity as well as improved heat transfer 

performance. Also, cooling is indispensable for maintaining the desired performance and 

reliability of a wide variety of industrial products such as computers, power electronic 

circuits,  X-ray generators and wind turbines [1]. With the unprecedented increase in heat 

loads and heat fluxes caused by more power in miniaturized products, high tech 

industries such as microelectronics, transportation and defense face cooling as one of the 

top technical challenges. For example, the electronics industry has provided computers 

with faster speed, smaller size and expanded futures, leading to reduce heat loads, heat 

fluxes and localized hot spots at the chip and package levels. Peristaltic transport of a 

nanofluid in an inclined tube has been addressed by Prasad et. al. [2]. Nowar [3] studied 
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the peristaltic flow of nanofluid under the effect of hall current and porous medium. 

Consequences of nanofluid on peristaltic flow in an asymmetric channel is analyzed by 

Nadeem et. al. [4]. Mahbubul et. al. [5] investigated latest developments on the viscosity 

of nanofluids. Mustafa et. al. [6] obtained analytical and numerical solutions of the 

influence of wall properties on the peristaltic flow of a nanofluid. Numerical solution of 

peristaltic flow of a Carreau nanofluid in asymmetric channel obtained by Akbar et. al. 

[7]. Krishnamurthy et. al. [8] discussed the effect of chemical reaction on MHD boundary 

layer flow and melting heat transfer of Williamson nanofluid in porous medium. 

     The theory of micropolar fluids introduced by Eringen [9] deals with a class of fluids 

which exhibit the micro-rotational effects and micro-rotational inertia. Physically, 

micropolar fluids may represent fluids consisting of rigid, randomly oriented (spherical) 

particles suspended in a viscous medium, where the deformation of fluid particles is 

ignored. The micropolar fluid theory has been successfully applied to the analysis of the 

wide variety of flow problems in fluid mechanics. The theory of micropolar fluid 

includes the effects of local rotary inertia and couple stress is expected to provide a 

mathematical model for the non-Newtonian behavior observed certain man-made liquids 

such theologically complex fluid as liquid crystals. Nadeem et. al. [10] analyzed the 

axisymmetric stagnation flow of micropolar nanofluid in a moving cylinder. Numerical 

study of micropolar convective heat and mass transfer in a non-Darcy porous regime with 

Soret and Dufour diffusion effects is introduced by Beg et. el. [11]. Flow of a micropolar 

fluid on a continuous moving surface is made by Ishak et. al. [12].  Bakier [13] 

investigated the natural convection heat and mass transfer in a micropolar fluid-saturated 

non-Darcy porous regime with radiation and thermophoresis effects. Stokes flow of 

micropolar fluids by peristaltic pumping though tube with slip boundary condition is 

studied by Tripathi et. al. [14]. Biswas et. al. [15] examined MHD micropolar fluid flow 

through vertical plate with heat generation.  Peristaltic transport of micropolar fluid in a 

tubes under influence of magnetic field and rotation is introduced by Abd-Alla et. al. 

[16]. Effect of suction/injection on flow of micropolar fluid past a continuously moving 

plate in the presence of radiation is discussed by El-Arabawy [17]. Abou-zeid [18] 

analyzed the effects of thermal-diffusion and viscous dissipation on peristaltic flow of 

micropolar non-Newtonian nanofluid: application of homotopy perturbation method. The 
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wall properties effect on peristaltic transport of micropolar non-Newtonian fluid with 

heat and mass transfer is studied by Eldabe and Abou-zeid [19]. 

    Peristaltic transport is a form of material transport induced by a progressive wave of 

area contraction or expansion along the length of a distensible tube, mixing and 

transporting the fluid in the direction of the wave propagation. This mechanism has 

received considerable attention in recent times in engineering as well as in medicine. It 

plays indispensable role in transporting many physiological fluids in body. Many modern 

mechanical devices have been designed on the principle of peristaltic pumping for 

transporting noxious fluids without contaminating the internal parts. Sankad and 

Radhakrishnamacharya [20] investigate the influence of wall properties on the peristaltic 

motion of a Herschel-Bulkley fluid in channel.  Flow of Herschel-Bulkley fluid in an 

inclined flexible channel lined with porous material under peristalsis is studied by 

Sreenadh et. al. [21]. The effect of heat transfer on peristaltic transport of a Newtonian 

fluid through a porous medium in an asymmetric vertical channel is studied by Vasudev 

[22]. Peristaltic flow of a Newtonian fluid through a porous medium in a vertical tube 

under the effect of magnetic field is studied by  Vasudev et. al. [23]. The flow separation 

through peristaltic motion for Power-law fluid in uniform tube is studied and reported by 

Abd El Naby and Abd El Kareem [24]. Hayat and Javed [25] obtained the exact solutions 

of peristaltic transport of Power-law fluid in asymmetric channel with compliant walls. 

Peristaltic flow of Williamson fluid in an asymmetric channel through porous medium is 

analyzed by Kavitha et. al. [26]. Hayat et. al. [27] discussed the heat transfer analysis for 

peristaltic mechanism in variable viscosity fluid.  

     The aim of the current study is to discuss the peristaltic transport of micropolar 

nanofluid through porous medium in a symmetric horizontal channel under the effects of 

heat absorption, chemical reaction and wall properties. The fundamental equations which 

govern this flow have been modulated under long wavelength and low Reynolds number 

assumptions, a closed form solution for velocity and microrotation velocity are presented. 

Homotopy perturbation solutions for energy and nanoparticles equations are obtained. 

The physical behaviors of emerging parameters are discussed through the graphs.     
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2. Mathematical formulation   
                                                                            휆	                         푦 

                                                                                          푎	                                                              

                                                                                                                              
																																																																																																						0표																																																		푥              

                                                                                                                              
																																																																																																																푏    

 

                                                                     Figure (1)  The sketch of the problem  

       We consider the peristaltic transport of micropolar fluid with nanoparticles through 

porous medium in a symmetric two-dimensional channel with flexible walls on which are 

imposed traveling sinusoidal waves of long wavelength. The lower and upper walls of the 

channel are maintained at constant temperature (T 	and	T ) and nanoparticles volume 

fraction (φ 	and	φ ).  Figure (1) shows the physical model of a symmetric channel.  

The channel wall equation is given by:                          

ℎ = 푎 + 푏 sin (푥 − 푐푡)                                                                                               (1)          

Where a is the half width of the channel, 푏 is the amplitude of the wave, λ is the 

wavelength, t is the time and c is the wave velocity. 

The equation of motion of the flexible wall is given by: 

																																																																									L(η) = P − P 	                                                (2) 

Where L is an operator that is used to represnt the motion of the stretched membrance 

with damping forces such that: 

                                          L = −T + M + C 	                                               (3) 
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Where T  is the tension in the membrane, M  is the mass per unit area, C  is the 

coefficient of the damping force and P  is the pressure on the outside of the wall due to 

tension in the muscles. 

If we assume that	P = 0, then the equations governing the two-dimensional transport of 

incompressible micropolar fluid with nanoparticles through a porous medium in a 

symmetric channel are: 

+ = 0                                                                                                                       (4) 

휌 푢 + 푣 = − + 푘 + (푘 + 휇) + − 푢                              (5)                                     

휌 푢 + 푣 = − + 푘 + (푘 + 휇) + − 푣	                                         (6) 

휌 퐽 푢 + 푣 − 2푘훺 + 푘 − + 훾 +                                                  (7) 

(휌푐) 푢 + 푣 = 푘 + + (휌푐) 퐷 + + +

																																																																																																											 − 푄 (푇 − 푇 )	       (8)  

푢 + 푣 = 퐷 + + + − 푘 (휑 − 휑 )	                                    (9) 

         Where u and v are velocity component,	휌  is the density of the fluid, 푃 is the 

pressure,	푘 is the micropolar viscosity,	훺 is the microrotation  velocity, μ is the 

viscosity,	푘 	is the permeability of porous medium,	퐽 is the microinertia constant, γ  is 

material constant, (휌푐)  is the heat capacity of the fluid, (휌푐)  is the heat capacity of the 

nanoparticle material,	푘  is the thermal conductivity,	퐷  is the Brownian diffusion 

coefficient, 퐷  is the thermophoretic coeffecient,  푄  is the heat absorption coefficient 

and  푘  is the chemical reaction parameter. 

The appropriate boundary conditions are: 

 

u = 0	, Ω = 0	,					T = T 		and				φ = φ 				at			y = −h  
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u = 0	,			Ω = 0	,			T = T 		and		φ = φ 						at				y = h                                           (10) 

Let us introduce the following dimensionless quantities as: 

푥∗ =   ,  푦∗ =  ,  ℎ∗ =  , 푡∗ =  ,  푢∗ = 		, 푣∗ =  ,  훿 =  , 푃∗ =  ,훺∗ = 	  , 

퐽∗ =  , 휃 = 		 , 휑∗ =  .                                                                                (11) 

After substituting from (10), Equations (5-9) can be written in dimensionless form after 

dropping the star mark as: 

푅푒	훿 푢 + 푣 = − + + 훿 + − 푢                                      (12) 

푅푒	훿 푢 + 푣 = − + 훿 + 훿 훿 + 	− 훿 푣                     (13) 

푅푒	훿	 푢 + 푣 = −2훺 + 훿 − + 훿 +                               (14) 

푅푒	푃 훿 푢 + 푣 = 훿 + +푁 훿 + +푁 훿 +

																																																																																																																					 − 훾푃 휃          (15) 

훿푆 푢 + 푣 = 훿 + + 훿 + − 푆푆 휑                                  (16) 

The dimensionless boundary conditions are: 

u = 0	,			Ω = 0		, θ = 0		and		φ = 0				at			y = −h 

u = 0	,			Ω = 0		, θ = 1		and				φ = 1					at		y = h                                                        (17) 

For long wavelength(i. e,			δ ≪ 1)  and low Reynolds number  (i. e. ,			Re → 0) the system 

of our equations (12-16) can be reduced to:  

+ − 푎 푢 =                                                                                           (18) 

= 0                                                                                                                              (19) 

− − 2훺 = 0                                                                                                   (20) 
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+ 푁 +푁 − γP θ = 0                                                                           (21) 

+ − 푆푆 휑 = 0                                                                                                (22) 

From equation (19), it is clear that 푃	is independent of y. Therefore equation (18) can be 

written as: 

 + − 푎 푢 =                                                                                          (23)                                                                                                                  

By using equations (2) and (3) with the help of the wall equation (1) we can write: 

= −휖[(2휋) cos2휋(푥 − 푡)(퐸 + 퐸 ) − (2휋) 퐸 sin 2휋(푥 − 푡)]                            (24) 

Where 푁 =   is the coupling number, 푎 =  is the porosity parameter, 푚 =

( )
( )

  is the micropolar parameter,	퐸 = −  is the membrane tension parameter of 

the wall,	퐸 =  is the mass characterizing parameter of the wall,  퐸 = 	 is the 

damping parameter of the wall,	휖 =  is the amplitude ratio ,	푃 =   is the Prandtl 

number, 푆 =   is the Schmidt number,		푅푒 =   is the Reynolds number, 훾 =  

is the coefficient of heat absorption,  푆 =  is the coefficient of chemical reaction,	푁 =

( ) ( )
( ) 	

 is the Brownian parameter, 훼 =
( )

 and 	푁 = ( ) ( )
( ) 	

 is the 

thermophoresis parameter.  

3. Method of solution 
Introducing the stream functions ψ such that:  

푢 =   

Then (20) and (23) takes the form: 

− 푎 (1 − 푁) + 푁 − 푝 = 0                                                                            (25) 
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− − 2훺 = 0                                                                                                 (26) 

Where 푝 = (1 − 푁)  

Using the condition ψ = 0		at 	y = 0, the general solution of equations (25) and (26) by 

using the boundary conditions (17) are given by: 

휓(푦) = 푒 푐 + 푒 푐 + 푒 푐 + 푒 푐 −                                                   (27)                                

푢(푦) = − − 푒 푐 훽 + 푒 푐 훽 − 푒 푐 훽 + 푒 푐 훽 	                                (28) 

Ω(푦) =

√ ( )

⎝

⎛
√ √ √ √

⎠

⎞

       

  

                                                                                                                                                      (29)  

The homotopy perturbation method is a series expansion method used to solve nonlinear 

ordinary and partial differential equations. On the basis of the homotopy perturbation 

method [27] we can write equations (21) and (22) as follows: 

퐻(푞, 휃) = (1 − 푞)[퐿(휃) − 퐿(휃 )] + 푞 퐿(휃) + 푁 +푁 − γP θ             (30)  

퐻(푞, 휑) = (1 − 푞)[퐿(휑) − 퐿(휑 )] + 푞 퐿(휑) + − 푆푆 휑                                 (31)   

With 퐿 =  is a linear operator, the initial approximation 휃  and 휑  can be defined 

as:           

휃 (푥, 푦) = = 휑 (푥, 푦)                                                                                          (32)       

The basic assumption is that the solution of equations (30) and (31) can be expanded as a 

power series in	푞     



9 
 

 휃(푦, 푞) = 휃 + 푞휃 + 푞 휃 +∙∙∙                                                                                    (33) 

휑(푦, 푞) = 휑 + 푞휑 + 푞 휑 +∙∙∙                                                                                   (34) 

The solution of temperature and nanoparticle phenomenon (for 푞 = 1) are constructed as 

follows: 

휃(푥, 푦) = (240ℎ 푐 (2 + 푦 훾푃 ) + 40ℎ 푦푐 (12ℎ + 푦(−3푁 − 6푁 + 2ℎ푦훾푃 )) +

2(120ℎ (ℎ + 푦) + 240ℎ 푐 + 푦(240ℎ 푐 + 5푦(푦푁 + 푁 (−6ℎ + 푦푁 ) +

2푁 (−3ℎ(1 + 2ℎ푐 ) + 푦푁 )) − 5ℎ푦훾(−4ℎ(3ℎ + 푦) + 푦(2ℎ + 푦)(푁 + 푁 ))푃 +

ℎ 푦 (5ℎ + 푦)훾 푃 )) − 5ℎ푆푦 (4ℎ + 푦)푁 푆 )                                                             (35) 

휑(푥, 푦) = (−10푦 푁 푁 + 2푁 (5(24ℎ (ℎ + 푦 + 2ℎ(푐 + 푐 + 푦(푐 +

푐 ))) + 6ℎ푦 (1 + 2ℎ(푐 + 푐 ))푁 − 2푦 푁 + ℎ푦 (2ℎ + 푦)훾푁 푃 ) +

5ℎ푆푦 (4ℎ(3ℎ + 푦 + 6ℎ푐 + 2ℎ푦푐 ) + 푦(2ℎ + 푦)푁 )푆 + ℎ 푆 푦 (5ℎ + 푦)푆 ) +

푦 푁 (−10푦푁 + 5ℎ푁 (12 + 48ℎ푐 + 푦(2(2ℎ + 푦)훾푃 + 푆푦푆 )) − 2ℎ 훾푃 (20(3ℎ +

푦) + 120ℎ푐 + 푦(40ℎ푐 + 푦(5ℎ + 푦)(훾푃 + 푆푆 )))))                                                (36) 

Where c → c  and 훽 → 훽  are defined in the appendix. 

4. Results and discussion  
      In order to get a clear insight of the effects of heat absorption, chemical reaction and 

wall properties on peristaltic flow of micropolar fluid with nanoparticles through porous 

medium in a symmetric horizontal channel, we have computed numerical values of 

velocity, microrotation velocity, temperature and nanoparticle phenomenon for different 

values of various parameters entering the problem. 

4.1 Velocity and microrotation velocity distributions. The velocity 푢 and the 

microrotation velocity Ω of the flow field are found to change more or less with the 

variation of the flow parameters. The effect of the flow parameters on these distributions 

are analyzed with the help of figures (2)-(12). 

     Fig. (2)  display the effect of the porous parameter 푎  on the velocity distribution. The 

magnitude of the velocity decreases with the increase in 푎 . It is also observed that the 
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maximum velocity occurs at the center of the channel. This result in agreement with the 

physical expectation, since the porous represents an obstacle to flow and therefore, 

reduced its velocity. 

     Figs. (3) and (4) depict the effects of the coupling number	푁 on the velocity and the 

microrotation velocity distributions. It is found that the velocity decrease with the 

increase of the coupling number N. While the microrotation velocity increase with the 

increase of the coupling number N near the lower wall and the inverse effect occur near 

the upper wall. 

    Figs. (5) and (6) illustrate the velocity and the microrotation velocity distributions for 

several values of the micropolar parameter 푚. It’s seen that the increase of the micropolar 

parameter 푚 increase the velocity of the flow field. It also noted that the difference of the 

velocity for different values of	푚 becomes greater with increasing the normal axis y and 

reaches the maximum value at the center of the channel. From fig. (6)  it is observed that 

an increase in  푚 decrease the microrotation velocity near the lower wall of the channel 

whereas it increases Ω near the upper wall of the channel.  

     Figs. (7)-(9) display the effects of wall parameters  on the velocity distribution. The 

rigid nature of the wall is represented by the parameter 퐸 , which depends on the wall 

tension and 퐸  represents the stiffness property of the wall.  퐸  represents the dissipative 

feature of the wall. The choice  퐸 = 0 implies that the wall moves up and down with no 

damping force on it, and therefore, indicates the case of elastic walls. The effects of the 

rigid nature and the stiffness property of the walls on the velocity distribution for the 

elastic walls (퐸 = 0) is shown in figures (7) and (8). It can be seen from these figures 

that the velocity increase by increasing the tension parameter 퐸  and the mass 

characterizing parameter 퐸 . The effect of the dissipative walls on the velocity is given in 

figure (9). This figure show that, as the dissipative nature of the walls 퐸  increase, the 

velocity decreased.  

     Figs. (10) - (12) illustrate the effects of wall parameter on the microrotation velocity 

distribution. It is seen that microrotation velocity	Ω		at	 ixed	values	of		y	decreases as 퐸  

and 퐸 	increase, this occurs near the lower wall and the inverse effect occurs near the 

upper wall which indicated graphically through figures (10) and (11). Figure (12) shows 
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the variation of the microrotation velocity	Ω for different values of the damping 

parameter E . It is clear that  	Ω  increase by increasing the values of the damping 

parameter E  near the lower wall and the inverse effect occurs near the upper wall. 

4.2 Temperature distribution. The temperature of the flow field is mainly affected by 

four flow parameters, namely, Prandtl number 푃 , heat absorption coefficient 훾, the 

Brownian parameter 푁  and the thermophoresis parameter 푁 . The effects of these 

parameters on the temperature of the flow field are shown in figures (13)-(16) 

respectively.                         

     Figs. (13) and (14) depict the effects of the Prandtl number 푃   and the coefficient of 

heat absorption 훾 on the temperature distribution. The Prandtl number is the ratio of 

momentum diffusion to heat diffusion. It is a measure of the relative importance of 

viscosity and heat conducting in a flow field. Thus, as the Prandtl number increases, the 

viscous forces dominate over heat conducting and hence, the temperature decreases. The 

variation in the temperature distribution for different values of coefficient of heat 

absorption 훾 is given in figure (14). It is noticed that an increase in the values of  훾 leads 

to decrease in the temperature. 

     Figs. (15) and (16) display the effects of the Brownian parameter 푁  and the 

thermophoresis parameter 푁  on the temperature distribution. There is a substantial 

increase in the temperature with an increase in  푁  and 푁 . As the Brownian motion and 

thermophoretic effects strengthen, this corresponds to the effective movement of 

nanoparticles from the wall to the fluid which results in the significant increase in the 

temperature.   

4.3 Nanopaticles phenomena distribution. The nanoparticles phenomena distribution of 

the flow field is affected by four parameters, namely, the Schmidt number 푆 , the 

chemical reaction coefficient	푆, the Brownian parameter 푁  and the thermophoresis 

parameter 푁     

    Fig. (17) illustrates the nanoparticles phenomena distribution against	푦 for several 

values of the Schmidt number 푆 . The Schmidt number quantifies the relative 
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effectiveness of momentum and mass transport by diffusion in hydrodynamic and 

nanoparticles. As the Schmidt number increase the nanoparticles phenomena decrease.   

    Figs. (18) Shows the effect of the coefficient of chemical reaction		푆 on the 

nanoparticles phenomena. It is clear that nanoparticles phenomena decrease as the 

coefficient of chemical reaction	푆 increase. 

     Figs. (19) and (20) display the effects of the Brownian parameter 푁  and the 

thermophoresis parameter 푁  on the nanoparticles phenomena. There is a substantial 

increase in the nanoparticles phenomena with an increase in  푁 . While the nanoparticles 

phenomena decrease by increasing the thermophoresis parameter 푁 . 

5. Conclusion 
     Wall properties on the peristaltic transport of micropolar fluid with nanoparticles 

through porous medium in a symmetric channel under the effects of heat absorption and 

chemical reaction are addressed. Under the assumption of long wavelength and low 

Reynolds number, the expressions of velocity and microrotation velocity are obtained in 

closed form, while the solutions of temperature and nanoparticles equations are obtained 

by using homotopy perturbation method. It believed that the present work will serve for 

understanding more complex problems including the various physical effects investigated 

in the present problem. The main results are summarized as follows: 

(1) The velocity of the flow field decrease in both region of the channel by increasing the 

porous parameter  푎 . 

(2)  microrotation Ω velocity increase with the increase of the coupling number N near 

the lower wall and the inverse effect occur near the upper wall. 

(3)  The effects of the rigid nature and the stiffness property of the walls on the velocity 

distribution for the elastic walls (퐸 = 0) increase the velocity. 

(4) The increase of Prandtl number leads to the temperature decreases. 

(5) The temperature increase with an increase in  푁  and 푁 . 
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(6) Increasing the magnitude of chemical reaction coefficient 푆 led to decrease in the 

nanoparicles phenomena.  

(7) The nanoparticles phenomena increase with an increase in 푁 . While the nanoparticles 

phenomena decrease by increasing the thermophoresis parameter 푁 . 

6. Caption of figures 

Figure (2). The velocity distribution	푢 is plotted against 푦 for different values of 푎  
when	푚 = 6	,푁 = 0.2	,  휖 = 0.5, 	푥 = 휋, 푡 = 휋 , 퐸 = .01,	 퐸 = .01, 퐸 = 0 . 

Figure (3). The velocity distribution	푢 is plotted against 푦 for different values of 	푁 
when	푚 = 6	, 푎  =0.2, 휖 = 0.5, 푥 = 휋, 푡 = 휋, 퐸 = .01	,	 퐸 = .01, 퐸 = 0 . 

Figure (4). The microrotation velocity distribution		Ω is plotted against 푦 for different 
values of 	푁 when	푚 = 6	, 푎  =0.2, 휖 = 0.5, 푥 = 휋, 푡 = 휋, 퐸 = .01	,	 퐸 = .01, 퐸 = 0 . 

Figure (5). The velocity distribution	푢 is plotted against 푦 for different values of 	푚 
when	푁 = 0.2	, 푎  =0.2, 휖 = 0.5, 푥 = 휋, 푡 = 휋, 퐸 = .01	, 퐸 = .01, 퐸 = 0 . 

Figure (6). The microrotation velocity distribution		Ω is plotted against 푦 for different 
values of 	푚 when	푁 = 0.2	, 푎  =0.2, 휖 = 0.5, 푥 = 휋, 푡 = 휋, 퐸 = .01	, 퐸 = .01, 퐸 = 0  

Figure (7). The velocity distribution	푢 is plotted against 푦 for different values of 퐸  
when	푁 = 0.2	, 푎  =0.2, 푚 = 6	, 휖 = 0.5, 푥 = 휋, 푡 = 휋, 퐸 = .01, 퐸 = 0 . 

Figure (8). The velocity distribution	푢 is plotted against 푦 for different values of 퐸  
when	푁 = 0.2	, 푎  =0.2, 푚 = 6	, 휖 = 0.5, 푥 = 휋, 푡 = 휋, 퐸 = .01, 퐸 = 0 . 

Figure (9). The velocity distribution	푢 is plotted against 푦 for different values of 퐸  
when	푁 = 0.2	, 푎  =0.2, 푚 = 6	, 휖 = 0.5, 푥 = .11, 푡 = .1, 퐸 = .01, 퐸 = .01 . 

Figure (10). The microrotation velocity distribution		Ω is plotted against 푦 for different 
values of 퐸  when	푁 = 0.2	, 푎  =0.2, 푚 = 6	, 휖 = 0.5, 푥 = 휋, 푡 = 휋, 퐸 = .01, 퐸 = 0 . 

Figure (11). The microrotation velocity distribution		Ω is plotted against 푦 for different 
values of 퐸  when	푁 = 0.2	, 푎  =0.2, 푚 = 6	, 휖 = 0.5, 푥 = 휋, 푡 = 휋, 퐸 = .01, 퐸 = 0 . 

Figure (12). The microrotation velocity distribution		Ω is plotted against 푦 for different 
values of 퐸  when	푁 = 0.2	, 푎  =0.2, 푚 = 6	, 휖 = 0.5, 푥 = .11, 푡 = .1, 퐸 = .01, 퐸 =
.01. 

Figure (13). The temperature		휃 is plotted against 푦 for different values of 	푃  when	푆 =
0.15, 푆 = 2, 푥 = 휋, 푡 = 휋, 휖 = .5, 푁 = 1.5	, 푁 = 1 , 훾 = .5. 
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Figure (14). The temperature		휃 is plotted against 푦 for different values of 	훾 when		Pr =
.71	, 푆 = 0.15, 푆 = 2, 푥 = 휋, 푡 = 휋, 휖 = .5, 푁 = 1.5	, 푁 = 1 . 

Figure (15). The temperature		휃 is plotted against 푦 for different values of 푁  when	푆 =
0.15, 푆 = 2, 푥 = 휋, 푡 = 휋, 휖 = .5, Pr = .71	, 푁 = 1 , 훾 = .5. 

Figure (16). The temperature		휃 is plotted against 푦 for different values of 푁  when	푆 =
0.15, 푆 = 2, 푥 = 휋, 푡 = 휋, 휖 = .5, 푁 = 1.5	, Pr = .71 , 훾 = .5. 

Figure (17).The concentration 휑 is plotted against 푦 for different values of 	푆  when	푃 = .7,
훾 = .5, 푆 = 2, 푥 = 휋, 푡 = 휋, 휖 = .5, 푁 = 1.5, 푁 = 1. 

Figure (18).The concentration 휑 is plotted against 푦 for different values of 	푆 when	푃 = .7,
훾 = .5, 푆푐 = 0.15, 푥 = 휋, 푡 = 휋, 휖 = .5, 푁 = 1.5, 푁 = 1. 

Figure (19).The concentration 휑 is plotted against 푦 for different values of 푁  when	푃 = .7,
훾 = .5, 푆푐 = 0.15, 푥 = 휋, 푡 = 휋, 휖 = .5, 푆 = 2, 푁 = 1. 

Figure (20).The concentration 휑 is plotted against 푦 for different values of 푁  when	푃 = .7,
훾 = .5, 푆푐 = 0.15, 푥 = 휋, 푡 = 휋, 휖 = .5, 푆 = 2, 푁 = 1.5. 
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Appendix 

훽 = , 훽 = 푎 (1 − 훼) +푚 , 훽 = 2푎 (1 − 훼), 훽 = 2푝 ,훽 =
√

, 훽 =

+ 훽 − , 훽 = −2 + 훽 훽 , 훽 = (−2 + 훽 훽 )  

푐 = ( )
( )

  

푐 = − ( )
( )

  

푐 = ( )
( )

  

푐 = − ( )
( )

  

푐 = (Csch[ √ ](−(Sinh[ℎ( √ + 훽 )]푐 + Sinh[√ − ℎ훽 ]푐 )(−2 + 훽 훽 )훽 +

Sinh[ℎ( √ + 훽 )]푐 훽 (2 − 훽 훽 ) + Sinh[√ − ℎ훽 ]푐 훽 (2 − 훽 훽 )))/((−2 + 훽 훽 )(−2 +

훽 훽 ))  



17 
 

푐 = (Csch[ √ ](−(Sinh[√ − ℎ훽 ]푐 + Sinh[ℎ( √ + 훽 )]푐 )(−2 + 훽 훽 )훽 + Sinh[√ −

ℎ훽 ]푐 훽 (2 − 훽 훽 ) + Sinh[ℎ( √ + 훽 )]푐 훽 (2 − 훽 훽 )))/((−2 + 훽 훽 )(−2 + 훽 훽 ))     

푐 = (푁 +푁 − 2ℎ 훾푃 ), 			푐 = − ℎ훾푃   

푐 = − ,						푐 = −   

푐 = (24ℎ푐 푁 + 24ℎ푐 푁 + 48ℎ푐 푁 − 48ℎ 훾푐 푃 + 2ℎ 훾푁 푃 + 2ℎ 훾푁 푃 −
2ℎ 훾 푃 + ℎ 푆푁 푆 )  

푐 = −   

푐 = −   

푐 = −   
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